Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Eur J Integr Med ; 40: 101241, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1065081

ABSTRACT

INTRODUCTION: The novel coronavirus pneumonia that broke out in 2019 has become a global epidemic. According to the diagnosis and treatment plan issued in China and the existing clinical data, Shufeng Jiedu (SFJD) Capsule can be effectively used in the treatment of COVID-19 patients. This study aimed to explore its mechanism of action by network pharmacology and molecular docking technology. METHODS: The Chinese Medicine System Pharmacology Analysis Platform (TCMSP), a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (BATMAN-TCM), the Encyclopedia of Traditional Chinese Medicine (ETCM) and related literature records were used to search the composition and main active compounds of SFJD, and to screen out the targets of drug components. Disease-associated genes were obtained by the Human Gene Database (GeneCards), the Human Online Mendelian Inheritance Platform (OMIM) and the DisGeNET database, and the co-targeted genes/proteins as targets of both SFJD and COVID-19 were selected by the Comparative Toxicogenomics Database (CTD). Co-targeted genes/proteins were analyzed by STRING, the Database for Annotation, Visualization and Integrated Discovery (DAVID) and Reactome for proteins to protein interaction (PPI), pathway and GO (gene ontology) enrichment, and predicted by AutoDock for their high-precision docking simulation. In addition, the therapeutic effect for SFJD treatment on COVID-19 was validated by the Chinese medicine anti-novel coronavirus pneumonia drug effect prediction and analysis platform (TCMCOVID). RESULTS: Screening resulted in 163 compounds and 463 targeted genes. The PPI core network contains 76 co-targeted proteins. The Reactome pathways were enriched in signaling by interleukins, immune system, etc. Finally, 6 key proteins of TNF, IL-10, IL-2, IL-6, STAT1 and CCL2 were selected and successfully docked with 4 active ingredients of quercetin, luteolin, wogonin and kaempferol. CONCLUSION: SFJD may play a role in the prevention and treatment of COVID-19 through multiple active compounds acting on multiple targets and then multiple pathways.

2.
Eur J Integr Med ; 42: 101282, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1002518

ABSTRACT

INTRODUCTION: Zukamu granules may play a potential role in the fight against the Coronavirus, COVID-19. The purpose of this study was to explore the mechanisms of Zukamu granules using network pharmacology combined with molecular docking. METHODS: The Traditional Chinese Medicine systems pharmacology (TCMSP) database was used to filter the active compounds and the targets of each drug in the prescription. The Genecards and OMIM databases were used for identifying the targets related to COVID-19. The STRING database was used to analyze the intersection targets. Compound - target interaction and protein-protein interaction networks were constructed using Cytoscape to decipher the anti-COVID-19 mechanisms of action of the prescription. The Kyoto Encyclopedia of Genes and Genome (KEGG) pathway and Gene Ontology (GO) enrichment analysis was performed to investigate the molecular mechanisms of action. Finally, the interaction between the targets and the active compounds was verified by molecular docking technology. RESULTS: A total of 66 targets were identified. Further analysis identified 10 most important targets and 12 key compounds. Besides, 1340 biological processes, 43 cell compositions, and 87 molecular function items were obtained (P < 0.05). One hundred and thirty pathways were obtained (P < 0.05). The results of molecular docking showed that there was a stable binding between the active compounds and the targets. CONCLUSION: Analysis of the constructed pharmacological network results allowed for the prediction and interpretation of the multi-constituent, multi-targeted, and multi-pathway mechanisms of Zukamu granules as a potential source for supportive treatment of COVID-19.

3.
Front Pharmacol ; 11: 583651, 2020.
Article in English | MEDLINE | ID: covidwho-874521

ABSTRACT

Aromatic Chinese herbs have been used to prevent plagues since ancient times. Traditional Chinese medicine has unique advantages in the prevention and treatment of epidemic diseases. According to the traditional Chinese medicine treatment plan in the National COVID-19 Diagnosis and Treatment Plan (Trial Seventh Edition) of the National Health Commission, Chinese patent medicines or prescriptions rich in aromatic Chinese herbs are selected for prevention and treatment during the period of medical observation, clinical treatment, and recovery of confirmed COVID-19 patients. Some local health committees or traditional Chinese medicine administrations recommend a variety of other ways of using traditional aromatic Chinese herbs to prevent and cure COVID-19. These involve external fumigation, use of moxibustion, and wearing of sachet. The efficacy of aromatic Chinese herbs plays a decisive role in the prevention and treatment of COVID-19. The unique properties, chemical composition, and mechanism of action of aromatic Chinese herbs are worthy of extensive and in-depth experimental and clinical research. The findings are expected to provide a reference for follow-up treatment of novel coronavirus and the development of corresponding drugs. In 2003, Dayuan-Yin produced excellent results in the treatment of the SARS virus. Individually, 112 confirmed cases were administered this drug between January and April 2003, and more than 93.7% of the patients showed noticeable mitigation of the symptoms, as well as recovery. Dayuan-Yin also was selected as one of the nationally recommended prescriptions for the COVID-19. Based on the national recommendation of Dayuan-Yin prescription, this review discusses the role of volatile components in the prevention and treatment of COVID-19, and speculates the possible mechanism of action, so as to provide a basis for the prevention and treatment of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL